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The grand canonical ensemble of a two-dimensional Coulomb system with +1
charges is proved to have screening phenomena in its high-temperature region.
The Coulomb potential in a finite region A is assumed to be (—4,) !, where
4 4 is the Laplacian with zero boundary conditions on A. The hard-core con-
dition is not assumed. The model is set up by separating (—4 ,)~! into a short-
range part and a long-range part depending on a parameter A. The self-energies
are subtracted only for the short-range part and therefore a choice of A is a
choice of subtraction of self-energies. The method of proof is in general the same
as that of Brydges-Federbush “Debye screening,” except that here a
modification for the short-range part of the potentials is needed.

KEY WORDS: Sine-Gordon field; Coulomb systems; Debye screening;
cluster expansion; Mayer’s expansion; decay of correlation functions.

1. INTRODUCTION

1.1.

Brydges and Federbush® have proved that screening phenomena

occur for a clssical Coulomb system in three dimensions. They considered
systems of s species of particles. For simplicity, we describe their results for
two species of particles with charges e= +1. Let 4 < A’ be rectangular
regions in R’. Let 4, be the Laplacian 4 with zero boundary conditions on

4. Let

Let

u(x, y)=(=4,)7'0x y) = (=4, +17%5%) (%, )

vz,eiej(xi9 x]) = elej( _AA' + A“—Zlaz)_l(‘xi’ xj) + we,,ej(xio x])
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In Ref. 2 the partition function in A’ is defined by
Zyg= Z f dx, - f dx e PUeg—BW
Here e;= +1 for all i=1, 2,.., and

U:% Z €€ u(xl’ Xj ) W:% Z vz,eiej(xh xj)

1<ij<n I<i#j<n

They considered the limit of the system when A’ » R® and 4 ~R>.
They proved the existence and exponential clustering of correlation
functions of charge densities at high temperature under some conditions.
One of the conditions is as follows. v, is assumed to be decomposed as
wy+Wwg, where wyp>0, and there exists a constant B such that
Yi<izjen Walx;, x;) = —Bn, for all n.

1.2. We set up our two-dimensional Coulomb system by replacing
R’ by R?, A=4', and we put w,, =0. We prove, when 4 ~ R% the
existence and exponential clustering of correlation functions of charge
densities for all sufficiently small positive numbers 4 and all sufficiently
small f depending on A.

If we put

1 A
Z:ECXPB{ u(0, 0)+——-log ,1|2[2I }

where |A| is the area of A4, in Section 2.2, we shall relate our system to the

system defined by the infinite-volume limit of the system in A with the
partition function

n

e o)
'A=Z

SIN

fdxl---den Y e

where

H= Y (ee2m)log(ilp/lx,—x)) if 3 e=0
1<i<j<n i=

=00 if ) e#0
i=1

This system, with A =1, has been considered in Ref. 5. The 4 in Z’, can be
changed to 1 by redefining the activity z to be z exp(—log A/4n), so our
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model differs from the model in Ref. 5 in the boundary conditions (which
are Dirichlet instead of free) on the Coulomb potential. At present, the
problem with free boundary conditions is much harder. For a three-dimen-
sional Coulomb system, free boundary conditions have been considered in
Ref. 4.

1.3. Since we set w,,, =0, the short-range potential v, in our case no
longer satisfies the condition described in 1.1. We cannot use the same
criterion as the one in Ref. 2 for the convergence of Mayer’s expansion for
the short-range potentials. Instead, we use an “iterated Mayer expansion”
and a criterion for its convergence from Ref. 3 to deal with our short-range
potentials. The rest of our proofs, including the long-range potentials and
the combination of the two parts of potentials, are based on the same
arguments as those in Ref. 2. Our development is thus parallel with that of
Ref. 2. We assume reader is familiar with the proofs in Ref. 2.

2. DEFINITIONS OF THE SYSTEM AND THE MAIN RESULT

2.1. Let 4 be a domain in R% Let 4 be the Laplacian in R? and 4,
be 4 with zero boundary conditions in A. For any 4> 0, we define

u(x, y)=(=4,)""(x )= (=4, + 27257 " (x, »)

wlx, p)=(=4,+A75%) 7 "(x, ¥)

For A<= R? we consider the grand canonical ensemble of particles
with charges +1 or —1 defined by the partition function Z ,,

o0} et 15

Zy= ) %del“'L dx, Y e P

n=0 €] --en
Here e;= +1, V,=U+ W, and

U:% Z eieju(xia-xj)’ W:% €-€-W(X- X-)

1<ij<n 1<i#j<n
We choose I, =(228) " 15, >0 is called the Debye length. We note
that our system can be fit into the framework of Ref. 2 if we replace v, in
Ref. 2 by our e,e;w(x;, x;). (In Ref. 2, two boxes 4 and A’ are considered.

In our situation, because of charge symmetry, it is sufficient to consider
only one box A.)
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Let 0.(x)=>_,0,{x;) 6.(e;) be the density of charge e at x. Let J(x) =
> . eo,(x) be the total charge density at point x. If 4 is a functional of o,,
we shall write

o an
Z e

o 1!

A>=1A)/I(Y),  Z=1I(1)/Z,
where Z,=1I(1) calculated with u set to 0. We shall obtain the infinite-
volume limit {4 ) by letting 4 ~ R

2.2. Let [A4] be the area of A. If we put
z=2 exp B{—u(0, 0) + (1/4n) log(|4]/A,m)}

then

_yvZ — BH(A)

Z,= ngo ] L dx, L dx, ﬂ;en e

where

H(A)=(1/2) {Z e.e;[ul(x;, x;)— (1/4n) log(| 4| /24 7) + w(x,, x;)]

+(umwbghﬂuﬁa(ze) +ZEMth»-maon}

If we take A to be the disc with radius A/5/ and center at origin, then

1

1
—_— 21
O e g M ) 2D

(=447 (x y)=

where, for all x, A/(x, y) is the harmonic function of ye A such that
(—4,) *(x, y)=0, for all yedA. By the maximum principle of harmonic
functions,

1 1

1 1
<—log———— — —log ——— 2.2
Ihilx, V)l S 37 log T =5 o8 22)
We shall also use the following facts:

Al
Ix—yl

lim [(—AA+/121D2) Yx, ) —

x>y

}=LAyx (2.3)
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where L ,(y) is finite for all ye 4,
lim L, (y)= (log2——y) as A~ R?

and 7y is Buler’s constant.
By (2.1)-(2.3), we can prove that

/lim [u(x, x})—u(0,0)]=0

=
g B
—

PBm

e Alp
g —2P
2 |x,»—xj|

1 4] 1
u(x,x)—z—l ———:I——Z(logZHy)
& if Ye=0
=0 if Y e#0

Intuitively, these mean that the infinite-volume limit of our system is a
description of a neutral system, i.c., 3 e;=0, with pair interacting potential
(1/2n) log(Alp/|x — y|) (see, e.g., Ref. 5). This system depends on A. The
appearance of A may be explained as follows. The two-dimensional
Coulomb system is parametrized by an inverse temperature f that is
dimensionless and an activity z with dimension length =2 If we use the
Green functions of the Laplacian in R? to define the Coulomb potential, an
ambiguity arises. There is a one-parameter family (2n)~'log L/|x — y| of
Green functions, where L is a length. A choice of L will set a length scale so
that zL? is a dimensionless measure of the density. The choice of L in the
Green function amounts to a choice of how to subtract self-energies in the
free boundary conditions case because

Z eiej(zn)_l log(L/|x,— xj')
=Y ee(2n) log(l/Ix;—x;1)+ Y, eef2n) "' log L

i<j i<j

and since Y e, =0, the second term equals —2 'n(2n)~!log L, which is
proportional to n and therefore it is a self-energy (or equivalently a
redefinition of z). This ambiguity in the Green function surfaces as an
ambiguity in how to define and subtract self-energy in the Dirichlet case. If
the self-energies are omitted, the partition function is divergent. Therefore,
it is important to write the potential in our form U+ W.
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2.3. In the rest of this paper, we consider A4 to be rectdgular regions.
We consider observables of the form 4, = j 4,J(y) dy, where 4 is the unit
lattice square that contains x € R%

Theorem 2.1. Let d be the distance of 4, and 4, such that d> /.
(a) There exists a constant A, such that for all 4, 0<A<,, and all
sufficiently small f depending on 4, we have

(i) The infinite-volume limit exists,

hm <Ax>A=<Ax>7 hm <AxAy>A=<AxAy>
A7 R? A~ R?

(ii) The system screens, i.e., there exists a constant ¢ independent of f
such that

|<AxAy> - <Ax><Ay>l <C§ eXp(—d/le)

(b) For any /">, there exists a constant Ay(/') such that for any
0 <2< Ao(!"), the system has screening length /' provided f is smaller than
a constant f,(4). Here By(4) tends to zero as A tends to zero, and A4(!)
goes to zero as ' | [.

Our method of proof also yields the existence of the infinite-volume
limit for a product of more than two 4’s. When Z or f§ is zero, Theorem 2.1
can be proved by explicit computation. From now on, we assume Z and f
are positive.

3. SINE-GORDON TRANSFORMATION AND THE
SHORT-RANGE PART

3.1. Sine-Gordon transformation. Let duy(¢) be the Gaussian
measure with mean O and covariance u. Let

eM=27;1 EO%del---den

Y exp [—,BW+ i ip? e,-¢(x,-):| (3.1)

el ---en i=1

We apply the sine-Gordon transformation (see, e.g., Ref. 2) to obtain

1
Z=oZu= [ duo@) e (32)
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Let ¢,(x)=exp[if'?¢(x)e] — 1. By Mayer’s expansion,

M(4) =§1 % L dx, L dx,
P CR ’x),ljl ) (33)
Per . (xl,...,x )1 S
_ES 5 j xm...j dx[emzmel(ew)c Ga4)

(e=%), is the Ursell function of exp[—(B/2)Y,,; e.e;w(x, x;)].
Theorem 3.1, Theorem 3.2, and (3.7) imply that (3.3) is a convergent series
uniformly in A if 4 is sufficiently small and f <4n.

For 4/(¢) a functional of ¢, we define

1(A(9)) = Jdu (#) "Dt (§),  (AP)D1=Z7'UA($)) (3.5)

The above p’s are called truncated correlation functions of the system
with pair potentials e,w(x;, x;)e;,. In Section 3.2, we shall show that the
limit of p,, (X, x;) as A » R* exists, for distinct x;, x,,..., x,. We also
denote the limit by p. . (x,,.., x;). Both p_, and p | are independent of
x when 4~ R% We write 7, = (2p , { #) ~ /% The second term of (3.20) goes
to zero uniformly in f§, 0 < <27, as 4 goes to zero. Therefore,

lim 7, =I5 (3.6)
uniformly in f,0< < 2%, as 1 - 0.

3.2. The short-range part. For our short-range potentials, we shall

obtain estimates analogous to the estimates in Appendix 1 of Ref. 2. We use
n “iterated Mayer expansion”® of the truncated correlation function p,

and obtain a sufficient condition similar to (A1.6) of Ref. 2 for convergence
of the expansion.

Let T* be the sct of all tree graphs on {1,.., t}. Let I <s<rand ne 7"
By removing branches of the tree that contain no vertices of 1,..., s and also
removing vertices s+ 1,.., # that join exactly two lines, a unique minimal
augmented tree graph #< of order s is determined. We denote the set of all
minimal augmented trees of order s by A°. We write nen? if  determines
.

Let a,,..., a, be lattice squares in R% For any e T", we define

L,=L,(a,.,a,)=inf Y d(x;, x;)

Ljen
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where the infimum is taken over the set x;e4,, for j=1,2,.., 5, and x;¢ RrR?
for j=s+1,.,t We note that L, =L, ,. A useful property of L, , is

Y, exp[ —aL,(a;,.. a,)/Ip]<ci! (3.7)

@2yeenpy

for some ¢, where ¢, — 1 as o — co. Here the a; are lattice squares of size
.
For y>1, we write w=3Y%_, w®), where

W(K)= (_AA + yzKllleEz)—l _(—AA +y21<+2)v72152)-1
w®) has the stability property: Let BX) = f log y/47; then

Y e pw®(x;, x;) = ~nBX

Lgi#jsn

We define B<¥=3"% /B and

1w, = [ w0, x)| exp(a | x|/Tp) dx

Iwli= % Iw*®|, exp(2B=*)

KkK=0
By Theorem 2.5(a) in Ref. 3, when 1 <5</, and 2< ¢,

(™ )elxps X )= Y Qualt) (3.8)

nA e AS

Q)= ¥ T T [—eiew(x,, x)B] [ dP, (r)e " (39)

nendAnT K ijen

Here K — (Ky), ijen, and dP, k(r) is a probability measure depending on #
and K. Here W(r) is an interacting potential depending on r.
By Theorem 2.2 in Ref. 3, if 1> 2, |Q, 4()| is bounded by

Yo Y T 18w (x,, x,)| exp(2B=<%¥) (3.10)

nendAnT K jen

We put @, ,(1)=1 and define, for s> 1,

7 =OO.__~I_ d | dx, ) (3.11
Pheatsu )= ¥ = | dvey | dv T Qute) (311

By (3.4) and (3.11),
Pepne(X1sn X5) = > p;’f (X 150es X) (3.12)

UAEAJ
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Let a,,.,a, be lattice squares of size 7,. We shall estimate the
following quantities. For n* e A4°, we define

é”,,A(al,...,aS)zé 5 j dx1~~-dexS

elmes 9 a
F’Zi___,e:(xnm, XS) Eel(xl) e Sej(xs) (313)
8y a) =Y &y, a) (3.14)
A

"

kda)=| dx,-|

a a

dxs |pe1,,..,e,-(xla~--9 xs)' (315)

kpla)=| dx,- |

ay a,

dxs lp:":_,_,es(xls---’ xs)l (316)

The estimates for (3.13)-(3.16) can be ecasily obtained by the following
theorems.

Theorem 3.1. If k =4ezZf |w|| < 1/2, then there exist constants b,
and ¢ (o) such that

"

buz0, Yha=1
,,]A
leyil@,)| < €,(0) bys expl —aLyala)Ty]
e (@) <T32s0 5/ef 1w

Theorem 3.2. For any «, if 0 <0 < 4n, then x — 0 uniformly in Z, 5,
0<p<6, as A—=0.

Remark. In view of Theorems 3.1 and 3.2, from now on we always
choose A so small that we can set o= 1.

Corollary 3.3. ¢&4(ay,.., a,) is bounded by

7225+ (|l eB) = b,a exp(—aL,a/Ip) (3.17)

Proof of Theorem 3.1. We shall prove the theorem for I, =1. For
general I, the proof is straightforward. When x,eaq; for i=1,.., s and
x,e R* for i=s+1,.., t, we have

[T exp(a ix;— x;1) = exp(aL,4) (3.18)

ien
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Applying bounds (3.10) and (3.18) to (3.16), we get

kel ¥ o | i e a,

t=222s

x X 2 T IBw(x, x))l

esylener NERANT K ijen

x exp(a |x,— x;]) exp(2B=%) exp( —oL,a)+2Z8(s) (3.19)

Integrating over dx,,..., dx, and summing over e, ,,.., €,, we get

lopa) <25,(9)+ Y b

tz21z2s (I—S)!

x Y rPTlexp(~al,s) (3.20)

nendn T

“W|It712t—stt~2

We use ¢!l /(r—s)!s!<2’, for all 1<s<t, and Stirling’s formula;
\k,4(a;)| is bounded by

225(s)+27°k’s! (wl Pe) (1 — k)~ 'byaexp(—aL,u) {(3.21)
where

b= k' (1-k) Y 7'

tzs nent~ 1!

By Cayley’s theorem,
Yobua=3Y kK (1—k)=1
;1'4 tzs
By the assumption (1 —x) ™' <2, (3.21) implies our theorem for s> 2. For
s=1, our theorem also holds because, again by (3.21),
ka(a;)| <62 <2s! k°(||w] Be)~'b,aexp(—aL,.)

Proof of Theorem 3.2. Let |w| be the same as [jw| but with 7
replaced by /. Let K =4eZf | w|. By the same argument as in Theorem 3.1,
if £ <1/2, then

leya(a)l < cg(a) byaexpl —al,a(a,)/Ip] (3.22)

By the definition of 7, (3.22) implies that if £ <1/2, then I > clp,
where ¢ is a constant independent of Z, f, .. Therefore, to prove
Theorem 3.2, it is sufficient to prove an anlogous theorem for &.
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We shall prove the theorem for the case /, = 1. The proof for general
Ip s straightforward.
Let c=A"'I5'. Since
w0, y)| < (log y)(2m) ™" exp(—cy* | »1)

it follows that |w'®)| is bounded by (2 log y)(a — cy®) 72
For any o, we can choose A so small that ¢>2a. Then (¢y* —a)’>
(cy*/2)*. Recall

B = (Blogy)/dn,  B<F=(4m)~'(K+1)flogy

Therefore, | W] may be bounded by

¢ *8logy ) y *exp[(2m)~'(K+1)Blogy]

k=0
=c78(logy) y*" }, yEEm 2R
K=0

Since < é and d < 4n, the above series converges, and [|w]] is bounded by
c~%8(logy) y#*(1 —y 2+ =1 which goes to zero uniformly in
B, 0< <6, as A goes to 0.

Let xe R? and 4, be the unit lattice square that contains x. We define

12
Iwl'=X U (w0, y)|? exp(2 Iy!/TD)} exp(2B=")

Iwi” = max{[lwl, |w]'}

Using the same method as that in Theorem 3.2, we can prove that
k" =4ezf |w||” goes to zero, uniformly in Z, f, for 0<f <o, d<2m, as A
goes to zero. For the next theorem, we let d=dist(4,, 4,).

Theorem 3.4. Suppose 0<f<2n and dxz/,. There exists a
constant ¢(f) such that, if 1 is sufficiently small depending on «, then

<e(B) c)fa) byaexpl —aL, (A, 4,)/T5] (3.23)

Here c/(a) < 2s! (k") /eBf(||lw]”)? and ¢(B) < o as f— 0.

Proof. We see that (3.23) differs from (3.16) only in the domain of
the integration. By (3.10), (3.23) is bounded by the right side of (3.19), with
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L,ia;) replaced by L,«(4,,4)), and (a,,4,.,4) replaced by
(4,,4,, R?,..., R?). Therefore, to prove the theorem, it is sufficient to prove
(for 75 = 1) that there exists c(f) such that

Yo f dx, L dxz---fdex,n (Bw S (x,, x;)|

K esyisemer Ax

jen
x exp(a |x;— x;| ) exp(2B=%) (3.24)
is bounded by
c(BYIw| "y —2p =12 (3.25)

for all nen* n T". To prove this, we consider the following two cases.

Case 7. If there is a bond between 1 and 2 in #, then (3.24) is boun-
ded by

B wl =2 (w) (3.26)
with
¢'(w)=(2m) ' (log y) exp[ f(2m) "' log y]
X % exp(Kp log y/2m) exp[ — (d/lp)(y*/4— )]

If we choose A <min{y/2a, 1/4} and d>/,, then
¢(wy<e(B)=(2m) '(log y) exp[(27) ' log y]
x Y exp(Kp log y/2n) exp(—y%/2) (3.27)

c(f)< oo for all 0< f<2n and lim ¢(f) = ¢(0), as f goes to zero.

Case 2. If there is no bond between 1 and 2 in 5, we use the Schwarz
inequality to get an upper bound for (3.24) by

Bl Hlwll (3.28)

In both cases, {3.24) is bounded by (3.25).
Using the same argument as that in Theorem 3.4, we also obtain the
following estimates. Let

o0

fld)=}. exp(kplogy/2m)exp(—dy*/2lp) (3.29)

k=0
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Suppose A< min{y/2x, 1/4}; then

[ deo [ dx1pr i %)
R? R?

< fUxy = x]) eif@) by exp(—a [x1 ~ x,1/Tp) (3.30)

We note that f(0)= o0 and f(d) < oo if 0<f<2r and d>0. A useful
fact is that

[ frydr<oo it 0<p<in (3.31)

4. THE LONG-RANGE PART

We shall prove Theorem 2.1 by applying the cluster expansion and
Peierl’s expansion to the long-range part of the potentials. The proofs are
almost the same as the proofs in Ref. 2 except that we replace (1) the three-
dimensional objects by analogous two-dimensional objects and (2) the
estimates in Appendix 1 of Ref. 2 by the estimates in Section 3.2. We set
7, =1 in this section. The expansion for general 7, is straightforward.

4.1. Peierl’'s expansion. Let A4 be a rectangular domain that is a
union of closed unit squares. In this paper, lattice squares mean closed
lattice squares. Let L <1< L'. Let {Q,} be lattice squares in 4 with size L,
and {4,} be unit lattice squares in 4. Let t=2nf""2 Let 4 be a function
on R? with values integral multiples of 1, such that # is constant on the
interior of each £, and zero on A°¢. The Peierl’s contour 3 () of 4 is the set
of all discontinuities of 4. Let Y"(h) be the set of unit lattice squares in A
whose distance from > (#) is less than L. We set

szL”f #(x) dx
o{x)=¢(x)— A,(x) for xeQ,

Let g= g, be a function on R? depending on 4. We perform a trans-
lation ¢ =y + g. We define the following covariance C, and C:

Col=u141352 (4.1)
C'=Cylav (4.2)
Z=15"Co (4.3)

where v/2=3%, . Pe,e,p, .(x;,x,)/2 is the quadratic part in ¥ of
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M(y + g). Let du be the Gaussian measure with mean 0 and covariance C.
Then

Z=Y N [ du(y) eFece" (4.4)
h

N=[dutrew (<202 fur-2 o) @)

E=M($)—= Y p. [ exydx+27" [ gy (4.6)

Let o (¢)=exp(if'?ed)— 1. Then
= exp (¥ p. [ [00) 180 + o721
xexp (T p. [ 0)0.0)-p 01 TIn4) @7)

r(4) =exp [Z p.w,(A) Lz]{z exp[ — LA —n1)¥213 }_1 (4.8)

R——F,—F, (49)
F1=2_1752j(g—h)2+2‘1jgu’lg (4.10)
Fy=[es'(g-g) (4.11)

The above integrations on R? are over A.

By (7.19) of Ref. 2, which works also for the two-dimensional case, it is
possible to define g such that: (1) g=# outside 3. (2) Inside any connec-
ted component of 34, g depends only on 4 inside the same component. (3)
g is in the domain of Cy'. (4) [¢Cy'(g — g.) can be estimated to be small,
in the sense of Proposition 5.4.

4.2. The cluster expansion. We shall use the same expansion
formula as that in Ref. 2. We use the following notations.

For a fixed 4, let ¥= Y(h) be the set whose elements are either connec-
ted components of > “(k) or closed unit lattice squares in A\interior of
S (k). Let 7 be a sequence of sets Y,, Y,,.., Y,, where Y, is union of
clements of ¥ and Y,nY,=g, for all i#j We let X, =Y,
X;=Y,uX,_,,and X,=X. For any Y < 4, we write Y°=A\Y. By du(¢)
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we mean a Gaussian measure with mean 0 and covariance C(x, v, s)=
p(x, y, 5) Clx, y), where

plx, y,s)= Z Sisi+1"'sj——11i(x) 1j(y)

I<i<jsn+1

+ Z $;851 o Sioy L{x) 1{y) + Y L{x) L(y)

l<j<isn+l 1<isn+l

(4.12)

Here 1,(x) is the characteristic function of Y;, 1, (x) is the characteristic
function of ({J7_, Y,)%, and s5,=0.
We put, for a sequence of unit lattice squares a,, a,,..., a,,

1 [
é”(al,...,a,):g Y J dxl"'J dx,

aj ar

X pel,.u,e,(xl ERT) xl) Sel(xl) e SEI(XI) (413)

By the definition of E(A), E(A) may be written as a sum of terms of
&(a,,..,a,) and a term where &,(x) is replaced by yeB'> when t=2. We
define E(Y) to be the same sum of &(a,,.., a,) as in E(4), but g, must be in
Y, for all i. The term E(X, s} is the same sum of terms as added to E(X),
but each term &(ay,..,a,) is multiplied by [],.,s;, where iel if
1<i<n—1and if there exist o, f such that 1 <o, f<t,a,c Y, ,, a5 X;.

As in Ref. 2, we define the following operators:

n—1

w(F,s)=[] x(i)

i=1

(i) =£ E(X, 5)+ |

i Yigy

5 OEX,s)\/ & 5(E(X,s))>](“
X[<5l//(x)+ W) )(«w(yﬁ 0(»)

We write Y'< Y if Y’ < Y and Y is the smallest union of sets in ¥ that
contains Y'. The E¥(X, s) contains &(a,,..,a,) in E(X,s) with the same
multiplication of s, and if {J; _, ¢,\X,< Y, ;. The (i) on the bracket means
that when we expand the bracket into four terms, in each term, if there are
sequences a;,.., a, and ai,.., a, contributing to E(X, s)’s, the sequences
must satisfy (Uj_; ax) W (Ui @)\X;< Y4 .

d
dx fX. dy <£ C(x, y, s)>

822/49/1-2-2
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Let o/ be a functional of ¢, periodic in 1. By Section 8 of Ref 2 the
expansion formulas are as follows:

1
Z)I(&/W)):ZW(X) Z'(4, X) (4.14)
HX) =YY [ ds [ dun(p) " 55, 5) %X "Nt (4.15)
Z/(A, X) =T N [ du(yp) €537 e o7 (4.16)

h

In (4.14), X runs over all unions of lattice squares. In (4.15), J is a
sequence of sets Y,.., ¥, where the Y, are disjoint and {J7_, ¥,=X. For a
fixed y, we sum over all those 4 such that y is compatible with 4 and Y, is
the smalles union of sets in ¥(#) that contains the support of <.

5. CONVERGENCE OF THE EXPANSION

5.1. We shall prove that our expansions of Section 4 converge in the
following sense. Let A, i=1,.,w, be unit lattice squares and a;,
i=w, + 1,.., w; +w, be lattice squares of size /5. Let X, be the minimal
union of lattice squares of size 7, that contains ()4, U g, and X, = {Ja,. The
notation |X| means the number of lattice squares of size T, in X. We
consider <7 of the following form:

54 =H Lvexp[iﬁl/zqg(xi)ei] 1—[ L ec,j(xj) C(X 1y Xy 41wy (5.1)

We shall fix é, such that 0 <d, < 1/2.

Theorem 5.1. If A, L are sufficiently small and L’ is sufficiently
large according to J,, then for any ¢/ >0, there exist ¢, ¢4 (independent of
B) such that

> 1A (X)) exp(c), |1 X])
Lceyrte || B2 exp(c, 1X,])

xexp[ — (1 —268,) dist(X,, W)/I5] (5.2)

for B sufficiently small according to ¢'y, 4, L', L, and §,. Here

=TT | doxiTT] sy 10 o)
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the summation is over all X such that X > X, and X n W3 ¢. Moreover, if
the above sum is restricted to X=X, and X# X, then ¢4 +" can be
replaced by ccj'**2, where ¢ » 0 as f— 0.

Theorem 5.1 is the two-dimensional version of Lemma 9.4 of Ref. 2.
Since our .« differs from the ./ in Ref. 2, a factor %92 is included in our
estimate.

We shall prove Theorem 5.1 for 7, = 1. For general I,, we can use the
change of variables Iy > I/, 2 5212, f > B, A=A, x—>x/l, p> ¢, 6, -6,
and so on.

5.2. According to our expansion formula (4.15), the left-hand side of
(5.2) can be written as sums over:
n: the length of sequence y.
(m,), i=1,.,n:Y,;is a union of m, sets Y.
(Y;): choices of sets from Y.
h: h should be compatible with Y.

| ds: integration over ds.

A i e

T: the label increasing tree graphs. We write

mj, §-xuj |

i Yriusny

T is a mapping from {1,..,n} to {1,.., n} such that 7(i) <i.
7. Types of terms: (i) is a sum of five types of terms.
8. (¢): E’s are sums over 7> 2 of terms as in (4.13).
9. A,47:i=1,.,n—1. We write

Lmdxj dy=Y | ax|

Y+ 44774 4
10. (a)=ay,..,a, in (4.13) is a sequence of unit lattice squares. (a)
must be compatible with Y, 4/, A4/

ijs

dy

By (3.14), &(a;) =3 ,46,4(a;). We define a formal operator e°*¢ acting
on &(a;) or their derivatives [[]; L,j 0/0Y(x,)] &(a;) as follows. Whenever
€™ meets &(a;) that are taken from the right side of %X, then

e E(a) > Y, exp(6,L,4) Eu(a,).

n

The operator ¢’ is defined to be a multiplication by e’ if &(a;)=
&lay,.., a,).
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We define operators k" =[17 k"(i) as follows. x"(i) is one of the
following five operators dependmg on the type in summation 7. The five
operators are

e"e%hg(qa, ..., a,)

j dxj dy%C(x y)(w

700 p32Lo (L{ dx L,ﬁ dy 5‘/;:@;) %, y) 5:;(3’))

2700 p92L0 (JA; dx L; dy % C(x, y) %)

rOg ,632L¢ 5 6(9@
e <f ax L; Y5 ) 51/1(y)>

Here, for each sequence a;,.., a, in &, we have the restrictions {J g, X, |,
divdicJa;and Ja,n Y, #, forall s=1,2,.,m,_,.

Lemma 5.2. Let 1/2>¢6,>0 be fixed. For any 6,, ¢y, ¢, >0, there
exist ¢, r (in the definition of x”) such that if § is sufficiently small, then

Y 1A (X)] exp(cly |X1)
<sup exp(c, Fy + ¢ | X])
xexp[(1 =20, + d,)d] exp[ — (1 —26,) dist(X,, W)]

X j du, |e5 XS " e RN o | (5.3)

where 9, is replaced by 1 —26, + J, in k”. The summation in (5.3) is over
all X such that X2 X, and Xn W# .

We use the subscript 0 on the absolute value sign to mean that
absolute value is taken inside the sum that results when all differentiations
in k" are performed and inside spatial integrals and sums over species. The
sup means supremum over all compatible parameters listed in summations
1-10.

Proof of Lemma 5.2. This is identical to Lemma 9.4 in Ref. 2, except
that their dimensions are different. We take the proof from there, which
successively uses an inequality of the form

[ @010

1
< [ ) Wiﬂ} sup [alx) f(x) (54)
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where dv(x) is a measure that is one of the ten summations in our list.
Except for the summation 4, it is easy to see that the estimates of the rest of
the summations remain true for the two-dimensional case. The estimate of
summation 4 depends on the following inequality (Lemma 5.2 of Ref. 1):
there exist ¢ >0 such that

F(Y, hy=cY [oh(f))* (5.5)
S

where f runs over all internal lines of the lattice squares of size L in ¥ and
oh(f) is the jump of the value of 4 between the two squares of size L joined
at f. Following the proof of Lemma 5.2 of Ref. 1 with R? replaced by R?,
we can prove (5.5) by choosing c=min{1/192, L?%24}, while
c=min{L/432, L*/36} for the three-dimensional case.

After we have done the estimates for summations from 1 to 10,
we also use the following inequality to include the factor
exp[ — (1 —25,) dist(X,, W)] for the right side of (5.3):

(1—25,) dist(X,, W) < (1 —28,)(d+ Lo +2"2 | X]) (5.6)

Here, X is a union of disjoint Y, and each Y, is a union of disjoint Y,
from ¥. (5.6) can be understood as follows. L, controls the distances
between Y, and 22 [X]=2"23, |Y,| controls the total distances inside all

of the Y.

4

5.3. Proof of Theorem 5.7. We shall use the same formula as (9.25)
of Ref. 2 to estimate the right side of (5.3) and obtain Theorem 5.1. Let
FRol = e ReOu" e e eR gy
. (5.7)
5(x)=(l//+g—h)(x)—L“2J W+ g—h)(x)dx for xeQ,
Q

o

By Holder’s inequality, the right side of (5.3) is bounded by ([ is
understood to mean integrations over X)

sup exp[ — (1 — 24,) dist( X}, W)/TD] exp[ — {1 —c )F,]

exp [E+ G,— 252 j 52]

x |lexp(—F3)

s
P4

X

(5.8)

B [c; X+ (1= 26,4+ 6,) d+ 2752f52]
4
with pr'+p7 i+ p7i=1



20 Yang

We shall use the following estimates.

Proposition 5.3. Given ¢, >0 and p,>1, if 4 is sufficiently small,
then there exists ¢ such that

<exp(c|X] +c, Fy)

r

exp (E-i— G, 2052 j 52)

Here ¢ goes to oo as 4 goes to zero.

Proposition 5.4. There exists ¢(L’) such that
lexp(—£,)[,, <expl p,c(L') F/2]
and c¢(L’) becomes arbitrarily small as L’ is increased.
Proposition 5.5. Let
y<T52, B=2“1J(l//+g—h)2+2y‘1J'52

Given p;y <12 if 2 and L are sufficiently small and L' is sufficiently large,
then there exist c,, ¢, such that

lexp VBHP3<CXP(C1 | X| + ¢,y |Fyl)

Here ¢, <1, and ¢ goes to oo as 4 goes to zero.

Proposition 5.6. It is possible to choose y <72 such that, for any
P3> D, C 04, 05 1f f is sufficiently small, then

H | g5/ o eXp [27,;2 J 52+ ¢y | X| + (1 — 26, +52)a’}1

Itp
< Q(B, p3) lexp yBll,, (59)
Here Q(f, p,) can be estimated as follows.

(i) When X#X,, for any c¢,,c,>0, if § is sufficiently small
according to ¢, c,, then there exist ¢(f), c; such that lim ¢(f)=0 as § goes
to zero, and

exp(—c i Fy 4¢3 [X1) Q(B, p3) <c(B) e5 7™ L] (5.10)

(ii) When X=X, for any ¢, >0, if § is sufficiently small according
to ¢,, then there exist ¢,, ¢ such that

exp(—c, Fy) Q(B, p3) <cy* " exp(cy | X]) B2 (¢ (5.11)

Here ¢, is independent of A and lim ¢ = o0 as 4 goes to zero.
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Proof of Theorem 5.1 Assuming Propositions 5.3-5.6. In (~5‘8), we
choose p—1 so small that there exists p;>p and pyyp</5% By
Propositions 5.3-5.6, we get an upper bound for (5.8),

expl —c¢, Fy +¢p | X] — (1 —26,) dist(X], W10, p3)  (5.12)
By Proposition 5.6, when X # X, (5.12) is bounded by
IC1 e(B) eyt exp[ —(1—24,) dist(X, W)/Tp]

which goes to zero as f§ goes to zero. Therefore, when f is sufficiently small,
(5.12) is bounded by the bound for the case X = X ; namely,

Il B2ey 2 exple, | Xy| — (1 —28,) dist(Xy, W)/Tp]

for some ¢, > 0. This is the right side of (5.2).

Proof of Proposition 5.3. This is the two-dimensional analogue of
Lemma 9.9 of Ref. 2. The arguments in the proof of Lemma 9.9 of Ref. 2
work also for our case: They are based on (1) estimates of &(a;), where we
have obtained the same type of estimates in Section 3.2, and (2) bounded-
ness from below of the operators C! uniformly in s and A. This is also true
in our case.

Proof of Proposition 5.4. This is the two-dimensional analogue of
Lemma 9.5 of Ref 2. Using exactly the same argument as in Ref 2, we
obtain

c(L'y=c((L)cyes(L)

where ¢,(L) is the constant in (5.5), which can be chosen arbitrarily small
by decreasing L. The term c3(L’) goes to zero exponentially [exp(—L'/8);
see (9.418) of Ref. 2]. The ¢, is sup, [ dy |C(x, y)|, which is bounded by
c,(1—38,)"% Here we have used an estimate: For any d,>0, we can
choose A so small that

|CCx, y)l < ciexpl—(1=0y) [x—pl] (5.13)

where ¢, goes to oo as 4 goes to zero. Therefore, we let A be small but non-
zero, then we take L' large and L small according to c;.

Proof of Proposition 5.5. This is the two-dimensional version of
Lemma 9.8 of Ref. 2. The main arguments in Ref. 2 also work for our case,
except that, instead of assuming that ||v| = supr |v(x, y)| dy is small [see
{9.622) of Ref. 2], we can prove that lim ||v|| =0, as 4 goes to zero, by the
reults in Section 3.2. After this step, the proof proceeds as in Ref. 2.
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5.4. Proof of Proposition 5.6. This is the two-dimensional version
of Section 9.8 of Ref. 2. We shall follow the argument there. We note that
our &/ is slightly different from the ./ in Ref. 2, and we need a factor
()'¥?2 in our estimate.

Let H =exp(2]52 [ 5%); we shall estimate the L”-norm of

H|(k"e% e eRsef) e Re  Tre=ctdp Xl (5.14)

Step 7. We count the number of terms resulting from differentiations
in x”. Each derivative /0y in k" can act on one of ¢ [or é=¢,(x;)—
iBPeqy, if t=2], X, €%, e, exp[if*?d(x,)e;] in of. We write 6/ =
>, (8/64), where (8/dyr), can only act on one of the above five types of fac-
tors. We write k" =3, k. Let n, be the number of derivatives localized in
4,, w, be the number of factors in o7 that are localized in 4,, and m, be
the number of factors of ¢ or & that are from the &’s and localized in 4.
Then the number of terms resulting from the differentiations is bounded by

T (m 4w, +3)™ (5.15)

X

We use the “exponential pinning lemma,” Lemma 9.10 of Ref. 2, which
holds for the two-dimensional case with a change of constants: Given
¢' >0, there exists ¢ such that (5.15) is bounded by

exp(c'Og + c'd) ==+ (5.16)
By (5.15) and (5.16), (5.14) is bounded by
sup || Hex"= exp(c,d+ ¢, | X])
"x |1/ [exp(G,) exp(G,) exp(R) 1|, exp(— R) exp(—G>)|, (5.17)
where the constants in k; have been increased and ¢} > c,. |

Step 2. The operator exp(c,d) k; is of the form

o s

where J(x) is a product of C’s and p™’s from (3.13) and includes the fac-
tors prescribed by exp(c, d), exp(dL,), and exp(rO,). If x; involves factors
&, then some of the ¢’s should be replaced by &’s. The j in (5.18) is a com-
bination of multiple integrals, where each one is over a unit lattice square,
summation over species, and sum over s

x;) (5.18)
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We substitute (5.18) into (5.17); then (5.17) may be bounded by the
following form:

sup H HTT (1)) ™ exp(es 1X1) [ 170)| [T Tl (5.19)

4

where, for each 4,, T, is equal to 1 or equal to a derivative of one of the
following types, labeled by i. The J is the J multiplying {. Since our &/ is
different from the o7 in Ref. 2, we have included ¢ from < in type {iv).

(i) exp[G(4.,)]=r(4).
(i) expl[iB'd(x;)e,] from o.
(ii1) F5.
(iv) e,(x), ¥(x), £,(x) from &, and ¢,(x) from /.
(v) exp(ifPe,A)—1.
(vi) exp(if'?e;6)—1—if'? e, or

exp(iB2e,0) — 1 — if"%e,6 + Be? 6?2

Step 3. Bounds on |T,,;|. We shall use the scheme in Ref. 2 to bound
|T,,l. To bound the nth derivative of type (i), we may choose ¢, ¢,, ¢3,
and y <752 such that

(d"/dA™) r(A)| < cy(c, B®)" exp(cynlog n+ L?pA/2) (5.20)

The proof of (5.20}) is exactly the same as the proof of Lemma 9.7 in Ref. 2,
except that we replace L* by L? The nth derivative of a term from (ii) is
bounded by (c'?)". The nth derivative of a term from (v) is bounded by
(cB*)*-2 and the nth derivative of a term from (vi) is bounded by
B8P~ "+ g—h> " if n<?2, or (cf'?)" if n=2. The ¢ in (iv) is boun-
ded by |y|. To bound ¢, and &, in (iv), we divide the lattice squares into
two classes. Class A is the set of lattice squares in which g=4h. Class B
consists of the remaining lattice squares. In class A squares, &, is bounded
by cBly|* " if n<2, (¢f**)" if n=2. In class B squares, &, is bounded by
2+ cf2 Y| if n=0, and (cf'?)" if n>1. The nth derivative of &, is
bounded by (¢f'?)" if n > 1. For undifferentiated ¢’s, we separate them into
distinguished ones and undistinguished ones. We bound an undistinguished
¢ by 2 and a distinguished ¢ by ¢B"?|i|. We first choose a distinguished ¢
that is localized in each lattice square in class A, then choose three more
distinguished ¢’s localized in class A from each &. If this choice is
impossible, then we choose as many as we can.

The L?-norm of the product of ¥’s and &’s resulting from bounds
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of type (iv) and (vi) can be estimated by Wick’s theorem: Let n; be the
number of x; in the unit lattice square 4;; then there exists ¢ such that

fos

Here ¢ goes to oo as 4 goes to 0.

The factorials in (5.21) can be again estimated by the “exponential
pinning lemma,” Lemma 9.11 of Ref. 2: Given ¢’ >0 and ¢, there exists ¢
such that

<] (n) (521)

(n,N)? < =" exp(c'd) (5.22)
[

TT (V1) <™ exp[c'(Lo + d)] (5.23)

a

Here N, is the number of factors of distinguished ¢’s in x” that are localized
in 4. Inequalities (5.22) and (5.23) can be proved as in Ref. 2, with a slight
change of constants. We note that our .« is different from the o/ in Ref. 2,
but that the number of distinguished &’s localized in 4, is at most N, + 1.
Using the bound (N, + 1)! <2(N,!)% we may apply (5.22) and (5.23) to
estimate factorials in (5.21).

The result of these estimates is that (5.19) can be bounded by [le?®] ,,
Q(B, p;), with p;> p. Here Q(f, p;) is the supremum over compatible
parameters of the form

exp(cy [ X]) ¢=* £, 87 [ J) H(1F3l) (1 g — hl)

Here, T/6 is the power of f§ obtained from the above estimates. The factors
exp(c,d), exp(dL,), and exp(rO,) are included in J; constants c¢,, 6 have
been increased. Note that ¢ is independent of 4, while ¢, — o0 as A — 0. The
factor f, is defined by I7,(n,!)~4(N,!) "

We shall show that Q(p, p,) satisfies our estimates (i} and (ii) in
Proposition 5.6.

Step 4. We shall show that

o /4 paal Xl ‘[ng\(EA v X1)i/6 (524)

goes to zero uniformly in X when |X]>|X;l, and is bounded by
exp(c, | X|) when X'= X, as f§ goes to zero.

Note that |[X'~| is bounded by a constant ¢ times the number of
segments of size L of discontinuities of #, where ¢ =¢(L, L'). By (5.5), we
then obtain

exp(—c, Fy<exp(—c;cf12[2]) (5.25)
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For any nonnegative integer ¢, we have
exp(—cief )< (epe) B7q!
Therefore, for any nonnegative integer g,
exp(—c, Fi) < [(eyc)7Ip72q1 1= (5.26)
Let g=1 in (5.26); we obtain
e Ot L gRIZNIG {(5.27)

if B is sufficiently small according to c¢;, £, L". By (5.27), then (5.24) is
bounded by
erlelﬁ[tX\(Duxl)wzlzw]/é<€¢'ziXdﬁlX\X1I/6

the right-hand side of which goes to zero uniformly in X for |X] > |X,j, and
is bounded by exp(c, | X;|) when X'= X, as § goes to zero.

Step 5. We shall prove that there exists ¢;>0 such that, if f is
sufficiently small, then

P PRy B E NS uX1)|ﬁT/6ﬁ73|X0I/6I ] (5.28)

is bounded by ||{]], for all X.

Let J be a product of  many p"s and possibly some C’s with
exp(c;d), exp(dL,), and exp(rOgy) induced. In view of Theorems 3.1 and
3.2, we must produce enough power of § to compensate the factors f~*
that come from estimating the integrals of the p”A.

We shall first show that

T>|X\(Z"uX))|+6w+3 X (5.29)

if we allow (5.28) to include ¢! exp(c’'Ly).

From our expansion, for each 4 € X\(2'~ u X)), either a distinguished
g, a derivative of ¢, or a differentiation [0/dy(x)] is localized in 4. Each
case produces at lest a factor of B¢, For an & such that >3, if there are
two more distinguished or differentiated &’s, then we have a factor of S.
For an & such that ¢ =2, if there is one more & or a derivative of £, we have
a factor . Let S, {S|=s, be the set of &’s where the above choice is
impossible. For each & € S, there exists at least one &, which we call ¢;, in &,
such that g; is not differentiated and localized in class B. To bound 6w in
the right side of (5.29), it is sufficient to prove that, for any ¢/, ¢; >0, there
exists ¢ such that

exp(—c3 F,/8) < c'Mexp(2¢'L,y) B2 (5.30)
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To prove (5.30), we note that S contains at most two &’s from each «”( ).
We write S=.5,uU.S,, where each S, contains at most one & from each
k"(j). We shall consider S, only, as S, can be treated in the same way. Let
|Si| =s;. Let g,, = the number of ¢, localized in 4, where &€ S,, &, is from
k"(i), and 4€ Y, . We put g,,=the number of ¢, localized in 4, where
6,€8y, & is from «"(i), and 4¢ Y, ,.

If &(a) contributes to ¢,,, then (a) must contain 4 and a lattice
square in Y, ,. Recall that Y, , are disjoint. Therefore

S L(a)=Y d(4, 4)) (5.31)

where the left-hand side summations are over all [ such that &(a)
contributes to g,,; in the right-hand side summation 4,, j=1,.., ¢,,, are
chosen to be distinct and as close to 4 as possible.

We sum over all 4 such that g,,#0, to obtain

YN d(4,4)<Y L(a) (5.32)

Here the right-hand side summation is over all £(a) € S, the left-hand side
summation is over all 4 such that g,,#0, j=1,.., q,,, and 4; are distinct
and as close to 4 as possible.

By exponential pinning [see, e.g., {A2.2) in Ref. 2], for any ¢' > 0 there
exists ¢ such that

[T (3g24!) < ™ exp [c’ Y. d(4, 4)] <cMexp(c'Ly)  (5.33)

4

By (5.26), there exists ¢ > 0 such that, for i=1, 2,

e*t‘3F1/32<H ClImB3tlr‘A/2(3qm)! (534)
4

where the product is taken over all 4 such that ¢,, #0.
We note that ¢,,<1. By (5.33) and (5.34), we obtain that, for any
¢’ >0, there exists ¢ such that

e~—c3F1/16 g CIX1 ec’Lo‘B3s1/2 (535)

We apply the same argument to S,; then we have proved (5.30),
where ¢ has been increased, c=c¢(L’, L, ¢').

For 3 |X,| in the right side of (5.29), we shall separate X, into an
union of Xy, and X,, where X, is the union of squares in class 4, and X,
is the union of squares in class B. By (5.26),

e~63F1/8<Clonlﬁ31onf/6 (5'36)
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For any square 4 in X,,, there exists an ¢ from ./ localized in 4.
Whether ¢ is differentiated or not, we obtain at least a power of S~
Combining this with (5.36), we obtain a power of 3 | X;].

The factor exp(2¢'L,) is again absorbed in J. To estimate | |J|, we
note that the supremum of C exists; therefore, we may drop all C’s in J.
We obtain a product of [ p7"’s and ||| as an upper bound for | |J|, which
may be estimated by Theorems 3.1 and 3.2.

To show Lemma 6.1, we would like to estimate | |J] in terms of || C|,
which is again bounded by sup, [ C(x, y) dy, whenever a factor C appears
in J. If J contains at least one C, we then drop all C’s except one. Then the
factor that includes C must be one of the following six types:

f P(X 150y X)) C(x1, ¥ PO Y10y Vygors ¥s)
jp(xl,..., x,) Clx;, y)
[et»

[ 9081 %) Clty ) L i)
f Cyis 1) LIt Yoy a)
JC(J’!"": Vi +wz) C(Vis ¥)

Here, each p has a certain superscript #*, and integrations in x’s, ¥’s are
over certain lattice squares. We can estimate the above integrals by using
|C|l and possibly some of the following factors:

[ 1ot xl,00 (5.37)

SUD [ 19(p1omes vl dyy oy, dyy ooy, (5.38)

[ aysup [ 1t vl 1T @, (5.38)
4; Yi€ 4; S#E 0

where, in (5.38), the supremum is taken y, in R? in (5.38"), 4, and 4, have
disjoint interior. We may estimate the first factor of (5.37) and (5.38) by
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using Theorems 3.1 and 3.2. Fro Lemma 6.1, { = p, we may estimate (5.38")
and ||{|| by (3.30) and (3.31).

Combining the above estimates and (5.29), we find that if we choose ¢
to be sufficiently large, then (5.28) is bounded by |/{|, for all X, as § goes to
Zero.

Step 6. We shall prove that there exist ¢ and c¢5> 0 such that, for j
sufficiently small, then

exp(—cs IXI—C3F1/2)quU(lg—hl)H(IF’zl) (5.39)

is bounded by 1 for all X.

Let 4 be a unit lattice square. We denote by 3, the summation over
all internal lines of the lattice squares of size L in 4. By (7.19) Ref. 2 we
have

| Te—hP<L*Y Ioh(f)? (5:40)
4 2

The integral |, |F5| can be bounded by {[,|F3/*}"% By estimates
(9.414)-(9.419) in Ref. 2, there exists ¢ such that

172

1/2
([ 7)< Ziannr | (s41)
4 !

We may drop 1/2 from the right side of (5.41) because X, |6A(f)|” is either
0 or greater than 1 if § is sufficiently small.

The total factor of | g — 4| and |F}| localized in 4 is bounded by n,. By
(5.5), (5.40), and (5.41), (5.39) is bounded by

exp(—cs | X) exp [—cac/ 5 |5h(f>|2}fq I [c » |5h(f)|2r (5.42)
a L 7

If we choose ¢ to be sufficiently large, then (5.42) is bounded by 1, when f
goes to zero.

Step 7. By steps 4, 5, and 6, there exists c¢3>0 such that
exp(—c¢, F,)Q is bounded by

1] e3*= exp(cs | X4]) B2 (5.43)

when X=X, for § sufficiently small. Here ¢; is independent of A, while
c,— o as A—0. When |X|>|X,|, exp(—c, F,+c, | X])Q is equal to
ICI e(B) e5*+, where ¢(f) goes to zero as B goes to zero. This completes the
proof of Proposition 5.6.
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6. PROOF OF THEOREM 2.1

6.1. The following lemmas are analogous to statements in Sec-
tion 9.9 of Ref. 2.

Lemma 6.1. Let & be of the form (5.1) with {=p, . (x;,..., X,)

Suppose 4 is chosen sufficiently small and fixed to be nonzero. If f is
sufficiently small according to 4, then

11
lim ——I(«/) exists
A/R2220

The proof of Lemma 6.1 is based on the convergent expansion (4.14)
and the Kirkwood-Salsburg equations. Once we have proved convergence
of the cluster expansion (Theorem 5.1), the rest of the proof follows from
the same arguments as in Appendix 4 of Ref. 2. Using the “doubling the
measure” argument (see, e.g., Refs. 1 and 2), we also obtain the following
lemma.

Let 4, 4, be unit lattice squares containing x, y, respectively. Let a’s
be lattice squares of size /,. We consider the following observables. Let

A=Ay, €14y €y, Agyes Ay,)

~

= [ dv, explip"(x)e,]

x 11 j Ee(X)) Pey.. en(X 130 Xp) dX5 - - dX,, (6.1)
j=2"4

%ZJ' dle dx, [2] explif'¢(x,)e;]

X 1—[ J gej(xj) pel,...,e,,(xl,"'a xn) dxl Tt dxn (62)

j=3"4
Let

@:&{(Ay, €nt 1o Cnms Ay 25mes an+m)

Let X, X, X; be the support of .o/, #, €, respectively. Let Y, ={J7_, a,,

Yy=U/L,a4,, and Y3=J]_, a;. We shall denote the distance of X, X,
by d.

Lemma 6.2. Let 0<d,<1/2 be fixed; suppose we choose A
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sufficiently small but nonzero. Then there exist ¢; (independent of 1) and
¢4 such that if § is sufficiently small, then for all 4 we have

| KARBY 41— A D 4<{H 4|
<ep{exple (1] + X T} 07 1703
xexp[ —(1—-28,)d/T,]
Xk (A Qyps @) k(A Q5 ey @y ) (6.3)
[{E> 4l <cslexple, | X5])] g7

<J 0Ll e xt e e, (64)

Here k, is defined as in (3.15).

The L'-norm of p in (6.3) and (6.4) is from Theorem 5.1 if we replace
of there by the present of, #, and ¥. Going through the proof of
Theorem 5.1, in Proposition 5.6, we see that we have used the supremum
norms of exp[if*¢(x)e], or e, or their derivatives with respect to ¢.
Therefore we obtain the factor of the L'-norm of the p’s in (6.3) and (6.4).

6.2. We consider the following correlation function of two-point
charge densities in A:

<L J(x,) dx, L J(xz)dx2>A— <L J(xl)dx1>A <L

We assume

J(x3) a’x2> (6.5)

A

v

d=d(4,,4,)>T, (6.6)

We apply the sine-Gordon transformation to (6.5); then (6.5) can be
written as Y1+ 1I) [see, e.g., (9.912) of Ref. 27, where

I:<f ) a¢<ifa(zzxz)dx‘dx> (67)

oM(¢) OM(¢)
n=(| Zrye ], Ty ),

(L geat) L awoges), @

For any [I'>1,, we let 36,=("—Ip)/l'. If we choose 4 so small that
llp —Tpl/l' <8,, then (1 —28,)/T, = (I')~". Therefore, the following lemmas
are sufficient for proving Theorem 2.1.
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Lemma 6.3. Under the same conditions on J,,4, and f as in
Lemma 6.2, there exists a constant ¢ such that

1] < c2*8” exp(—d/Tp) (6.9)
| < 2B expl — (1 —26,)d/l5] (6.10)

Lemma 6.4. Under the same conditions on J,,4, and § as in
Lemma 6.2, the infinite-volume limit exists for I, II, respectively.

Proof of Lemma 6.3. By (3.3), M(¢) is a summation over n and over
(a) of &(a). For each &(a),

p='nt [ [06(a)/2g(x1)] dx,

is a summation of at most n terms of the form (6.1), and

pnt [[ [°6(a)/ap(x,) 24(x2)] dx, dx;

is a summation of at most n(n— 1) terms of the form (6.2). Here x, and x,
are integrated over 4, 4, respectively. Let @ be the minimal number of
lattice squares of size 7, such that their union covers 4, U 4,. By (6.4), |I|
is bounded by -

T3 YT e

| 1Pt X iy, (611)

for § sufficiently small.
By Theorem 3.4, (6.11) is bounded by

B Y. n(n—1)(2¢;)"Lexp(we )] c(B) 2(x")"
n=2
xe BN(Iwl") 2 Y bpaxexpl —Lya(4,, 4,) 151 (6.12)
”A
We note that ¢(f) is bounded as f§ goes to zero. We first choose 4 so
small that 2x"c; < 1 and we choose § to be sufficiently small according to
; then (6.12) is bounded by a constant times 228 exp(—d/I).
We shall apply (6.3) to estimate II. If § is sufficiently small according
to ¢, and hence to 4, then III| is bounded by

B2 X nm— —, c5* m[exp(ac )] 22"

nzl m=1

X Z Z kn(Axv a27-~-’ an) km(Aya a2+n7"'9 am+n)
(a) (a)

—(1—28,) dist(X,, X,)
A

X exp (6.13)

822/49/1-2-3
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By Theorem 3.1, (6.13) is bounded by

ﬂ<exp ——(1;251)d>

D

1 ~28,L,7T?
[ ) =1 ca(@)(2¢3)" ). Y boaexp —27-#} (6.14)

nzl (a) 74

Using the estimate of c¢,(«) in Theorem 3.1 with «=1, we may bound
(6.14) by

ﬁ(exp_“_2‘51)‘“"""’”>{Z 2K (2c3>"[c(51)1"”}2 (6.15)

I w1 €B vl

Here ¢(4,) is obtained by (3.7), which is an estimate of summing over (a).
If we choose 4 so small that 2kc;c(6,) <1, then (6.15) is bounded by a
constant times

Pz expl — (1 —26,) d(4., 4,)/Ip]

Proof of Lemma 6.4. From the proof of Lemma 6.3, we find that I
and II are convergent scries uniform in 4. Each term in the series has a
limit as 4 » R?, and therefore I and II have limits as 4 ~ R>.
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